Screening limited switching performance of multilayer 2D semiconductor FETs: the case for SnS.
نویسندگان
چکیده
Gate tunable p-type multilayer tin mono-sulfide (SnS) field-effect transistor (FET) devices with SnS thickness between 50 and 100 nm were fabricated and studied to understand their performance. The devices showed anisotropic inplane conductance and room temperature field effect mobilities ∼5-10 cm2 V-1 s-1. However, the devices showed an ON-OFF ratio ∼10 at room temperature due to appreciable OFF state conductance. The weak gate tuning behavior and finite OFF state conductance in the depletion regime of SnS devices are explained by the finite carrier screening length effect which causes the existence of a conductive surface layer from defect induced holes in SnS. Through etching and n-type surface doping by Cs2CO3 to reduce/compensate the not-gatable holes near the SnS flake's top surface, the devices exhibited an order of magnitude improvement in the ON-OFF ratio, and a hole Hall mobility of ∼100 cm2 V-1 s-1 at room temperature is observed. This work suggests that in order to obtain effective switching and low OFF state power consumption, two-dimensional (2D) semiconductor based depletion mode FETs should limit their thickness to within the Debye screening length of the carriers in the semiconductor.
منابع مشابه
Two-dimensional semiconductors for transistors
| In the quest for higher performance, the dimensions of field-effect transistors (FETs) continue to decrease. However, the reduction in size of FETs comprising 3D semiconductors is limited by the rate at which heat, generated from static power, is dissipated. The increase in static power and the leakage of current between the source and drain electrodes that causes this increase, are referred ...
متن کاملSub-60 mV/decade switching in 2D negative capacitance field-effect transistors with integrated ferroelectric polymer
There is a rising interest in employing the negative capacitance (NC) effect to achieve sub-60 mV/ decade (below the thermal limit) switching in field-effect transistors (FETs). The NC effect, which is an effectual amplification of the applied gate potential, is realized by incorporating a ferroelectric material in series with a dielectric in the gate stack of a FET. One of the leading challeng...
متن کاملOptical switching of the Dirac point in graphene multilayer field-effect transistors functionalized with spiropyran.
A facile method for achieving optical switching of the Dirac point and conductance in reduced graphene oxide multilayer FETs that are non-covalently functionalized with a photo-responsive spiropyran derivative is presented. The photoresponsive transition from spiropyran to merocyanine induces the reversible optical switching in graphene based FETs.
متن کاملSelective and localized laser-anneal effect for high-performance flexible multilayer MoS2 thin-film transistors
We report enhanced performance of multilayer MoS2 field effect transistors (FETs) on flexible plastic substrates with ultra‐short, pulsed‐laser annealed Ti/Au contacts without thermal damage. An analysis of the temperature distribution, based on finite difference methods, enabled understanding of the compatibility of our picosecond laser annealing for flexible PEN substrate with low thermal bu...
متن کاملFabrication and electrical properties of MoS2 nanodisc-based back-gated field effect transistors
Two-dimensional (2D) molybdenum disulfide (MoS2) is an attractive alternative semiconductor material for next-generation low-power nanoelectronic applications, due to its special structure and large bandgap. Here, we report the fabrication of large-area MoS2 nanodiscs and their incorporation into back-gated field effect transistors (FETs) whose electrical properties we characterize. The MoS2 na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 8 45 شماره
صفحات -
تاریخ انتشار 2016